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The properties of a set of conservative positive rate equations, such as the coliisional- 
radiative equations, are investigated. It is shown that the equations are positivity maintaining, 
and furthermore, converge uniformly onto a unique equilibrium state consistent with physical 
constraints. Two methods of integration are considered. The first involving eigenvector decom- 
position yields an exact solution, but is expensive in computer time, and cumbersome if the 
rate matrix is defective. A simple weighted finite difference approach may be integrated stiflly 
and unconditionally stably, and is therefore suitable for inclusion in multi-celled fluid codes. 
The improvement in accuracy obtained by weighting is investigated, and attention is drawn to 
the importance of a positivity-maintaining form. 

Interest in the feasibility of generating population inversions in highly ionised 
species has led to the need to study ionisation processes in developing plasmas. To 
this end, simple algorithms were described in an earlier paper [l] to allow the 
inclusion of time-dependent ionisation and recombination within a multi-celled fluid 
code. In this paper we further develop this work by considering algorithms for the 
more general collisional-radiative equations. 

The collisional-radiative equations [2] form a general group of rate equations with 
transitions between arbitrarily designated levels. Although their physical properties, 
for example, conservatism, equilibration, and positivism, are well known [2, 31, these 
have not been generally proven. We therefore, in this paper, initially establish these 
properties by considering the behaviour of the equations with a set of arbitrary rates. 
These results are used to define classes of numerical operators, with properties which 
mimic the exact equations. 

The differential equations associated with the time-dependent collisional-radiative 
equations are by their nature stiff [4]. If n levels of the system are considered, the 
rate equations involve the calculation of n(n - 1) different rate coefficients dependent 
in a complicated fashion on the state variables (principally temperature) of the gas. 
These should clearly be calculated as infrequently as possible, i.e., on the charac- 
teristic time scale of the hydrodynamics of the system. However, in general, the 
characteristic time scale associated with the rates may be much shorter than that of 
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the hydrodynamics. The algorithm should therefore be capable of stable operation in 
a fully stiff mode. Accurate multi-step methods for treating this problem are available 
[4], but these involve the storage of data from several time steps, typically 8n 
elements for each fluid-cell. As this rapidly becomes prohibitively large, we have 
concentrated on two-step schemes, which have the advantage of A-stability [5]. Two 
methods are considered: an exact method involving the eigenvector decomposition 
and a weighted finite difference approach. Since the latter involves approximately 
only one-sixth as many multiplications as the former, it is to be preferred unless 
accuracy is at a premium. In this context it should be remembered that the rates 
themselves are only inaccurately known, so that it is unlikely that a method of high 
accuracy can be justified in practice. 

THE COLLISIONAL-RADIATIVE EQUATION 

In general the fractional population of a state, i, of some stage of ionisation is 
determined by an equation of the form [3]: 

(1) 
i+i 

where the sum is taken over all states of that ionic species with a direct transition to 
the state, i. In principle, we may extend this sum to include all states of all ionic 
stages of that species by imposing upon the transition matrix, X, an appropriate 
sparsity pattern. The matrix, X, for a given element must be irreducible, for by the 
principle of detailed balance, every transition XU must be accompanied by its inverse, 
Xjr, and furthermore we may assume that there exists at least one transition into 
every state. The rate matrix, R, is given by 

Rii = C Xji: Rij=-Xc. (2) 
j+i 

The sparsity pattern imposed on the transition matrix, X, and therefore the rate 
matrix, R, will in practice depend on the energy level structure considered for each 
ionic stage. This may range from a tri-diagonal form (ground states only) to 
completely dense matrix (one ionisation stage alone). The rate coefficients, X,, are 
by definition real, non-negative and bounded, so that R is an M-matrix form [6]. 

In the absence of chemical interactions, the transition matrix for different species is 
separable and we may consider the behaviour of each element alone. We shall, 
therefore, henceforward consider one element alone. 

The set of equations (1) has some important properties, which are necessary for 
their physical interpretation. In the past these have been assumed on physical 
grounds; however, since the rates, Xll, are not exactly known, it is important to show 
that these properties follow as a direct consequence of the above form of the 
equations, and do not depend on the exact values of the rates. 
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(a) C1ql is conserved, for clearly 

c dq,/dt = 0. 
I 

In conformity with the usual definition we put 

zqi= 1. 
1 

(3) 

(b) The equations are positivity preserving; i.e., if the vector set q” > 0 at an 
initial time, to, then the set q > 0, at a later time, t. The formal solution of Eq. (1) 
may be written 

q!(t) = qp exp 
I 
-1’ C Xii dt’ 

lo j+i 

+ s 1’ Xu(t’) qj(t’) exp 
i+i t0 I 

-1’ c X,, dt” dt’. 
t’ j+i I 

(5) 

The coefficients Xii are all non-negative and bounded. Therefore if q,(t’) > 0 for j # i 
and to < t’ < t, then q, (t) > 0. Hence, by induction, since qp > 0, it follows that qr > 0 
for all i. Since the matrix X is irreducible we may extend this result to conclude that 
q(t) > 0 for all finite time intervals t > to. 

(c) The equations are stable. The exact solution of the set of differential 
equations can be obtained by reducing R to its Jordan normal form. The resultant 
equations are stable if and only if the non-zero eigenvalues of R have positive real 
parts. The nature of the eigenvalues of R is readily established by consideration of its 
transpose for 

Rf,=- c R;. 
/+i 

The matrix RT, and therefore R, is singular and its non-zero eigenvalues have positive 
real parts [ 71. The equations are therefore stable and, if the rates are constant, 
converge to an equilibrium state associated with the zero eigenvalue. 

We may remark on the relation of this condition to those of (a) and (b), for in the 
set, q, the term qr is bounded by the sum x1 q, which is constant. This does not 
ensure convergence to a steady state since purely oscillatory solutions may occur. 
These are not permitted by the stable condition. 

(d) The equilibrium state is unique. The equilibrium state is described by the 
eigenvector with zero eigenvalue. However, if this is a multiple root of the charac- 
teristic equation, the equilibrium state may not be unique, and the final equilibrium 
condition may depend on the path by which it is approached. Such phenomena are 
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found in phase equilibria, for example. In this case we show that the matrix, R, has 
only one zero eigenvalue. 

Let qs be an eigenvector of R with zero eigenvalue, and let Q be the departure of 
any state q from this equilibrium: 

Qi = qi - q”: xQi=O 
i 

and 

dQJdt=-xRijQj. (8) 

We may reduce the order of the equation from n to (n - 1) by eliminating one 
component (say Q,) to give 

n-1 

dQJdt=- 5 R,Qj=- v S,jQi 
j=l .I% 

(9) 

with Q, = - JJ;zi’ Q1. Clearly S and R have the same eigenvalues and eigenvectors, 
except that the eigenvector due to qs is removed from the matrix S. The components 
0fSare 

sij = Xi” - & 3 i#j, 
(10) 

Sii=Xin + C Xji. 

j+l 

Since at least one pair (X,,, X,,) must be non-zero the matrix S is non-singular 
(Appendix A). The matrix, R, therefore has only one zero eigenvalue and the 
equilibrium state is unique. Since the matrix X is irreducible and non-negative, it 
follows that no component of the equilibrium vector qs is zero. 

(e) The equilibrium state is physical, for if one component of q” (say qf,) is 
positive, then since R is an irreducible M-matrix and therefore monotone [6], all the 
remaining (n - 1) components are solutions of the (n - 1) equations: 

n-1 

c Ruq;=-R,,qS, 
/=l 

and therefore positive. 

(f) The solution of Eq. (1) converges uniformly to the steady state when the 
rates, X, are constant; i.e., the maximum norm of the fractional deviation vector 
(QJqi) at a time, t, satisfies 

II Qds;II < II Qr)/s;lL (11) 

where Q” is the value of Q at an earlier time, to < t, and is assumed to be nonzero. 
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We define the vector 

and Eq. (1) becomes 
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(12) 

dSJdt = t R;mPj, 
j=l 

(13) 

where Ri, = q;/q;R,,. If L is a uniform vector, i.e., one whose components are equal, 
then clearly 

xR;jL,=O, (14) 

for the case 9, =S, = ... = 1 corresponds to the steady state. Let L be the smallest 
component of 9’ at time, to; then 

p-L)>O, (-2”-L)>O: t > to, (1% 

since Eq. (13) must be positivity preserving. Hence, since L is constant in time, 

Min(B) > Min(S’). (16) 

Applying this result to the set (-9) we obtain 

Max(9’) < Max@“). (17) 

Since Cf q, = XI q”, it follows that Max(S) > 1 and Min(S) < 1. Hence since S, = 
1 + QJq;, the result (11) follows. 

That this solution converges on to the equilibrium state follows from the exact 
solution in terms of the eigenvector projection of q, which decays exponentially. 

NUMERICAL SOLUTIONS 

In general, we wish to evaluate the vector set q at some time, t, given the values of 
the set, go, at an earlier time, to, by means of a linear operation’ 

q = G(qO). (18) 

In view of the nature of the collisional-radiative equation, the operation G(qO) is 

’ I f  G is linear in q, then G(aq,, aq, ,... ) = aG(q,, q2 ,...), where a is a constant multiplier of the 
complete set, q. We note that since the average ionisation, z= C,Z,q,/C, q, , where Zi is the ionic 
charge of state i, we may include variation of the rates due to ionisation induced changes of electron 
density, the operator, G, remaining linear. 
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likely to be one of matrix multiplication. We have identified several important 
properties which we may require preserved by the operator G, namely: 

(a) G is conservative if 

(19) 

(b) G is positivity maintaining if for any non-negative initial stage, q”, 

q>o if q” > 0. (20) 

Furthermore, by analogy with the exact solution, we require that if the operation G is 
repeated a suflicient number of times, then q > 0. 

(c) G is equilibrating if 

4 = q” if and only if, q” = qs, (21) 

where qs is the unique set of steady state values of q corresponding to G. Clearly, if G 
is consistent with Eq. (l), such a set must exist and be unique. 

Two important theorems govern the repreated application of the operation G. 

THEOREM 1. If G is conservative and positivity preserving, then G is stable. 

Since the sum, xi qi, of a set of positive values qi is constant, each value qi is 
bounded, and the theorem follows. 

THEOREM 2. If, and only if, G is equilibrating and positivity maintaining, then G 
is convergent; i.e., repeated application of G converges uniformly to the steady state, 

The proof of this result follows a similar approach to that of the analogous 
theorem for the differential equation. Thus we consider the behavior of the vector Pi 
by means of the operation 

3, = q;G(q# ,...) = G’(9: ,... ). (22) 

Since G is equilibrating, G’ is differential; i.e., 9, = 2: if, and only if 2’: is uniform. 
Furthermore, since G is consistent with Eq. (l), G’ must be linear in 9. Thus if L is 
the uniform vector whose values equal the smallest component of 9O, 

(9-L)>O and 9-L=G’(-PO-L)>O, (23) 

since G’ is positivity maintaining, and by hypothesis ~2~ #L. Thus the smallest value 
of 9 is not less than that of 8’. Similarly the largest value of 9 is not greater than 
that of 9O. Since repeated application of a positivity-maintaining operator implies 
(9 -L) > 0, we conclude that the vector P is convergent. Furthermore, if the 
operator G is convergent, it is clearly both positivity maintaining and equilibrating. 
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Finally, since the operator G is linear in q, we conclude that the solutions, q, must 
converge to the equilibrium state, qs. 

A convergent operator is clearly stable. 

TWO-STAGE SCHEMES 

As an example of the application of these theorems we consider a general two- 
stage scheme for which a simple linear form was proposed in [ 11. In these methods 
the rate coefficient matrix is assumed to be tri-diagonal in form. The ionisation 
change across a pair of isolated levels qr and qr+ r is then calculated, d,. The net 
ionisation is obtained by recursively evaluating 

q,=qy+A,-,--Ai (24) 

subject to d, = 0. The scheme is clearly conservative. It is not, however, positivity 
maintaining. This condition is readily achieved by a simple limit on d, such that 

A, < (4; + A,-,) and A,> -41)+1 (25) 

if the recursion in (24) is performed with increasing i. This check, which is readily 
performed in the recursion, has been routinely included in our codes using this 
method. In our experience the clipping is extremely rarely required. The two-stage 
scheme in this form is stable. 

If the form of d, is chosen so that 

A,=0 if %/SS = 4r+1 I cl;+ 1 

as in [ 11, then the scheme is equilibrating. The positivity-maintaining form is 
therefore convergent. These general proofs replace the crude stability analysis given 
in [I], and are applicable to all two-stage methods. 

EIGENVECTOR DECOMPOSITION 

In principle the exact solution of Eq. (1) can be obtained by a similarity transfor- 
mation of R into its Jordan normal form. In practice this method, although feasible, 
is complicated and involves excessive computer operations when compared to the 
finite difference approximations to be described later. However, it should be borne in 
mind that it does, in principle, provide exact solutions, whereas those of the finite 
difference are only approximate. 

Since the matrix, R, is singular, we must remove the singularity by evaluating the 
steady state solution qs. We may reduce the order of the matrix by one using S, and 
the set Q = q - qs, as in Eq. (9). The projection of the set Q onto the set of eigen- 
vectors of S is straightforward if S is not defective or nearly defective. However, the 
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problems introduced by defectiveness into a general algorithm, which together with 
the large number of operations required make this approach unattractive for large 
repetitive calculation, are discussed in Appendix B. 

FINITE DIFFERENCE ALGORITHMS 

A more satisfactory approach is to use a finite difference scheme. If we require 
such a scheme to be unconditionally stable, i.e., for all step lengths, dt, it is necessary 
that the finite difference form of Eq. (1) be stable over the complete positive complex 
half plane of tit, the routine must therefore be A-stable (51. There is a fundamental 
theorem (51 which states that multi-step schemes cannot be A-stable if their order is 
greater than two. Therefore if we require an algorithm which is unconditionally stable 
for all forms of the rate equation (l), we must restrict ourselves to two-level multi- 
step schemes. Such a restriction is, of course, fully compatible with our storage 
requirement discussed earlier. 

We may write Eq. (1) in a finite difference form, using a weighted mean for the 
terms on the right-hand side, 

wtl -#)/At = jT, 4j[K,&II+’ + (1 - ~&$I 

-Xji[Wji#+l + (1 - Wji)d]T (26) 

yielding n equations, which we may solve by matrix inversion. We may reduce the 
dimensions of the system (and hence the work) by making use of the conservation 
law 

p#+‘=Cby (27) 

to eliminate q,, from the set of equations. 
Hence we obtain the set 

n-l 
c C,,qiY+‘=Bi, 
/=I 

(28) 

where 

n-l 
Cl, = 1 + xi” W*, + C xi, Wit 1 At: C, = [xl, W,” -xij W,j] At (29) 

j+i 
I=1 
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I 
n-1 

B, = qf’ X,, Wi, - x X,,(l - W,,) At i+i 1 I j=I n-1 
+ ,:i #ix,, win + xij(1 - w*j> IAL (30) 

/=I 

An alternative form of (28), suitable for use with an energy limit, is obtained by 
considering the change in ql, 

n-l 

+q;+‘-d: A,,=- c Aj 
j=l 

to give 

n-1 

1 C,,A, = B;, 
J=l 

(31) 

(32) 

where 

B; = k {Xi&-X,&At. (33) 
i+i 
j=l 

The matrix C is, in general, dense and Eq. (28) or Eq. (32) must be solved by 
either an elimination or an iterative method. In view of the fact that one usually only 
works with a restricted set of states, the demands of a compact elimination method 
are not severe. We note that since C is the form 

C=ItS’Ar, 

that C is a matrix of the type considered in Appendix A, and is therefore nonsingular. 
The set of equations (26) is clearly conservative. The derived set (28) is obtained 

using the conservation law (27) and must therefore be conservative. 
In equilibrium 

Hence if q” = qs, B’ = 0 and therefore, since C is non-singular, A = 0. Equation (32) 
and hence (28) and (26) are equilibrating, the steady state being that of the true 
solution. 

This general algorithm is not in general positivity maintaining. To incorporate this 
requirement we could include a post-evaluation check, as in the two-stage scheme. A 
more satisfactory approach, however, is to assign the weights so as to ensure this 
condition is upheld. 
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We write Eq. (26) in the form 

q = M- ‘PqO (35) 

which is positivity-maintaining if, and only if, M is a monotone [S] and P a non- 
negative matrix. In fact, 

P,, = 1 - /y (1 - W,,) X,l Lit: p,j= (l - w(j>x,jAt9 
I#1 

M,, = 1 + C W/fXjl At: 
/+i 

M, = - W,,X, At. (371 

(36) 

Since Xi, is non-negative, M is clearly an M-matrix, and therefore monotone and P is 
non-negative if, and only if, P,, 2 0. If this condition is upheld, the algorithm, and 
those derived from it, are both stable and convergent. 

THE CHOICE OF WEIGHTS 

The weights, W,, must be chosen in such a way as to enable the solution of the 
finite difference equations to approach the exact one for arbitrary values of the step 
At. Clearly this requires that in the limits 

and 
wo i as At+0 

(38) 
K,+ 1 as At+oO. 

The weights are used in an attempt to represent the degree of equilibration of a pair 
of states i and j during the time step. Thus if the rates are large, (X1, +X1,) At >> 1, 
the states will be instantaneously equilibrated throughout the time step, and W, = 1 
is appropriate. On the other hand, if (X,+X,,) At << 1, the states will not 
equilibrate and W,, = f is suitable. It is clear that each weight is associated with a 
transition and therefore 

where 1, = (X1, + X,,) At, andf is a function with the limits (38). 
We may solve Eq. (1) for the case of a two-state system to give 

4=W,2&-&ld)41 -ew(-U% 

in contrast to the finite difference result, 

(40) 

(41) 
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Thus the finite difference form is exact if the weights 

h = l/I 1 - exrWd - l/L (42) 

We note that this function has the limits (38) and is therefore a suitable weight 
function. 

In view of the nature of the weights, to allow for rapid equilibration between two 
strongly coupled states, we may expect that it is an appropriate form. 

Alternative functions, simpler but of similar form, are 

W= Max{& (1 - l/A)] (43) 

and 

= Max{& 1 - [l/L - exp(-A)]}. (44) 

Figure 1 shows a representative calculation for a simple four-level system with 
transition matrix as given, for different values of the time step, At. The accurate 
solution was calculated using Gear’s routine [4]. For comparison the values obtained 
by a split time step (W = 4) and fully implicit (W = 1) calculations are also shown. 
The marked improvement obtained using the weights can be clearly seen. Of the three 
weight functions the two-level form, Eq. (42), shown in Fig. 1 is marginally superior, 
a result consistent with other tests of this set. 

These choices of weights do not in general ensure positivity. This requires that 

;, (1 - w,,) x,, At ,< 1 (45) 

for all i. Let us suppose that the level i has Ni non-zero transition elements 
connecting it to other states j; then the above condition is satisfied if 

W,, 2 1 - l/N,X,, At. (46) 

This may be put into a form consistent with (38): 

1 
1 

Wu = W,( = Max 
1 - l/Max;N,, Nj) A,,) I ’ 

or by analogy with Eq. (42), 

W, = Wji = Max 
I 

l/[ 1 - exp(-&)] - llAij9 
1 - l/[Max(N,, Ni) A,]. 

(47) 

(48) 

Of these, the first, which is computationally simpler, is preferred. 
Figure I also shows the calculation of the identical matrix problem as before by 

the positivity-preserving weights. (47). It can be seen that the results are considerably 
more accurate than those obtained without the positivity limit. Calculations show 
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a 
10.0 TIME 

------------_-_-___-- -__-- - -------_____ b 
,__,_._ -.- .-.-.-. 1 -.-.-.-.- , 

15.0 TIME 20.0 
\ 

‘1 
--A- ---- ----- 

, 
0.05 : I- 

r’ 
C 

5.0 10.0 15.0 20.0 
TIME 

FIG. 1. (a) The exact solution of a four-level system as a function of time. The transition matrix 
having values (0.1, 0.2, 0.3; 0.5, 0.2, lo-‘; 1.0, 0.2, 0.6; lo-‘, lo-‘, 1.0) and the initial state (1.0, 0.0, 
0.0, 0.0). Under these conditons the maximum error incurred by a single finite difference calculation is 
with level 1. (b) The population of level 1 as a function of time-step for the exact solution -, and for 
various weight functions: ---, W= i; e.9 , W=l; -.-, W=(l/(e-“-1)-l/A); and -..-, 
W= Max{ (1 - l/31), i}. Note the markedly improved accuracy of the positivity-maintaining solution. 
Comparison of the maximum errors of different positivity-maintaining weights: -, 
W= Max{(l - l/31, f); and ---, W= Max((1 - l/31), (l/(e-” - 1)- l/A)). 
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that the simpler form (47) is marginally more accurate, and since it is 
computationally simpler it is to be preferred. This result is confirmed by subsequent 
tests with alternative matrices, for example, Fig. 2. 

THE ENERGY LIMIT 

It was shown in [ 1 ] that if the system is near equilibrium, the energy exchange 
between ionisation and the electron temperature resulting from collisional ionisation 
and three body equilibration can lead to instability. In a similar fashion the inclusion 
of general collisional excitation and deexcitation energy exchange may also result in 
an unstable scheme. Thus near equilibrium 

and the electron energy change due to a change Ai in the population of state i 

=-VIA, (50) 

per ion, where Vi = Vl + $2, k T,, and V, is the total excitation and ionisation energy 
(from the ground state of the neutral atom). Thus, as before, considering an iteration 
for the electron temperature, we obtain on the next iteration, Aye’,, 

;z k Al*, N - c V; . (dqJdT,) AT, (51) 

and is unstable if 1 C Vj . dqJdT,I/$Zk > 1. This difftculty may be overcome by 
specifying a limiting energy transfer AE by replacing Ai by 

Ai=A~ 1 +C ViA~/AE ) 

where Ai is the value given by Eq. (3 1). A suitable value for AE is given in [ 11. 

DISCUSSION 

The finite difference alogorithm described here has been widely used by the author 
in several studies. In an extensive series of tests the maximum error of the optimally 
weighted scheme did not exceed 0.07 and convergence to the equilibrium value was 
observed to be uniform. Figures 1 and 2 show the results of two such tests. In Fig. 1 
a four-level system with rates arbitrarily distributed in the range 10e4 to 1 is 
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considered. The maximum error is for state 1 at about two time units, and is about 
0.06. The error decreasing to zero at dt + 0 or At + 00. Figure 2 shows a more 
difficult test in which 10 states with rates arbitrarily distributed in the range 0.1-1.0 
are considered. In this case also the maximum error is less than 0.07 over this range 
in which all states simultaneously equilibrate. By comparison, the maximum error of 
the fully implicit scheme is 0.18 and that of centred difference 0.8; the latter method, 
in common with all non-positivity-maintaining weights ((42)-(44)), yielding negative 
values. 

The most expensive computational element in the algorithm is the solution of the 
set of linear equations (31) which involves f(n - 1)3 multiplications. A significant 
reduction in the computational work required can be achieved by reduction of the 
algorithm to a two-stage form. In its most extreme form this involves the treatment of 
each ionisation separately by either a collisional-radiative form or a single level 

0.01 L a 
0 5.0 10.0 

TIME 
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1.0 

;: 

5 
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0.c 

-0.C 

-1.0 
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O.O! 
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-.-.-,- -’ I 
.I’ 10.0 15.0 20.0 

/ TIME 
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\ 
\ 

---- -- ---- ----- 

FIG. 2. A test similar to that in Fig. 1 is shown for a IO-level system with transition matrix having 
values in the range 0.1-1.0 only. The arrangement of the figures is as in Fig. 1. It is noteworthy that this 
example was the least accurate of all tested in this series of numerical experiments performed to 
investigate the merits of these weight functions. 

581/39/2-2 
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(collision-limit) approximation. In this form, the sparse areas of the matrix, R, which 
has the form of a set of diagonal overlapping blocks 

R = 
(53) 

are separated. The algorithm involves an independent solution for each block, Ri. The 
number of multiplications involved is then 4 ny= I (n, - 1)3 when there are N blocks 
each of ni levels. Clearly 

n=l+i (n[-1). 
i=l 

This method is particularly convenient if the element contains a large number of 
ionisation stages, many of which are only briefly involved in the calculation. It is a 
straightforward generalisation of the two-stage method of [l] and is, of course, stable 
and convergent. 

In principle the number of discrete levels of each ionisation stage is limited only by 
the depression of the ionisation level. In practice one must introduce some 
appropriate limit to the number of levels considered. This can only be determined by 
consideration of the individual characteristics of the system, for example, its L.T.E. 
limit, and time variation. The levels above this limit are included by some appropriate 
averaging such as is used in the collision-limit approximation. 

If we compare the finite difference solution with the eigenvector decomposition we 
may note that increased accuracy of the latter is only obtained at the expense of a 
large increase incomputational work: the finite difference solution requiring approx- 
imately f(n - 1)3 multiplications [9] compared with 2(n - 1)3 for the eigenvector 
scheme. Since experience has shown that the ionisation routines typically increase the 
run-time of a standard hydrocode by a factor of about 4 (depending on the element, 
number of levels, etc.); this clearly represents a prohibitive further increase for most 
problems. 

The finite difference algorithm described here has been incorporated into the one 
dimensional Lagrangian fluid code, and the general similarity code described in [ 11, 
With the modification to the energy limit described earlier, the scheme has worked 
well, and no problems have been encountered. The programmes have been used exten- 
sively in several studies in connection with XUV laser action. Figure 3 shows a 
typical output from the similarity code. The model is used to study the population 
growth of the hydrogen-like carbon ion C VI during therapid expansion of a laser 
heated fibre. The code parameters were set to model the experiments reported in [ 111. 
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FIG. 3. The development of the populations in the hydrogenic levels n = 1 to n = 4 of CVI during 
irradiation of a S-pm-diameter carbon tibre by a 150~ml laser pulse of 140 psec duration focussed into a 
40-pm-diameter focal spot. 

Then run was carried out with 10 energy levels of C VI in a two-stage scheme, 
although only the populations of the lowest four are shown. It can be seen that the 
algorithm is well-behaved throughout the run. 

APPENDIX A: THEOREM ON DETERMINANTS 

LEMMA 1. If a or its transpose is an irreducibly diagonally dominant real matrix 
[6 ] of order n, i.e., 

aii> 1 (aii( 
izi 

or aii > 1 laiil 
iti 

(A-1) 
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with equality in no more than (n - 1) cases, then the determinant of a 

IUijl > 0. (A4 

Since a is a real matrix, its eigenvalues are real or occur in complex conjugate 
pairs. Furthermore the eigenvalues of an irreducibly diagonally dominant matrix have 
positive real parts [6, 71, and their product, the determinant, is therefore positive. 

If equality occurs in all cases the matrix is singular and the determinant zero [7]. 

LEMMA 2. If b is a real matrix of order n with 

b,,>O:b,,>O:b,<O, l<j<n 

and 

hi> 5 lbul or bii> i Ib/iI,’ 2<i<n (A-3) 
I+i j+i 
j=2 j=2 

with equality in no more than (n - 2) cases, then the determinant of b 

lb,jl > 0. (A-4) 

Furthermore if equality occurs in all (n - 1) cases, then the determinant of b is non- 
negative. 

The cofactor of b,, is the determinant of an irreducibly diagonally dominant real 
matrix, and is therefore positive. The cofactor of b, is 

and since 6, < 0 (i # j, 2 < i & n, 1 Q j Q n), this is a determinant of the same form 
as 6, but order (n - 1). Since the lemma is clearly true for n = 2, it follows by 
induction that it holds for all orders n. 

THEOREM. The real matrix r is of order (n - 1) and is of the form 

rtj = si + 4j St 2 0 

and tit or its transpose is an irreducibly diagonally dominant M-matix; i.e., 

(n- 1) b-1) 
tii> C It,,1 or t,, Z c I t,,l and to < 0, i # j 

/Zi i#i 

with equality in no more than (n - 2) cases. 

(A.6) 

(A-7) 
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The determinant, which may be written, 

1 1 1 *** 

-s2 r2] r22 ..+ -s2 *21 t22 

is therefore a determinant of order n of type b. Therefore by Lemma 2 

IV > 0 

WV 

(A-9) 

and the matrix r is non-singular. The matrix r is only singular if there is equality in 
all (n - 1) terms ti,, and the terms si are all zero. 

APPENDIX B: AN ALGORITHM USING THE EXACT SOLUTION 

In principle the set of differential equations (1) may be exactly integrated if the 
transformation of R to its Jordan normal form is known [9]. If R is not defective this 
is readily accomplished by the projection of the vector, q, onto the biorthogonal set of 
eigenvectors of R. In practice it is necessary to first remove the singularity of R by 
solving the set of (n - 1) linear equations 

(n-1) 
1 SUq;=---Rt,,, (B.1) 
j=l 

where S is given by (10) to determine the equilibrium state vector, q”. Then if S is not 
defective, the deviation vector, Q, is given by 

(n-1) 
Q = 2 (yk9 Q”> xk wk--Jk(t 7 to)}, 03.2) 

k=l 

where Q” is the value of Q at time to, and yk and xk are left- and right-hand eigen- 
vectors of S with eigenvalue L,. 

This form can only be used if the matrix is not defective; i.e., no two eigenvectors 
are parallel [9]. In practice numerical evaluation introduces errors so that exact 
parallelism is unlikely to occur. However, when the matrix is nearly defective, 
attention must be paid to the round-off error terms. Consider the example: 

which has eigenvectors and eigenvalues, 

: (1, l/h - b)) 



270 G. .I. PERT 

The solution Q = ($) is therefore 

x = [x, + yo/(a - b)] eaf t y,/(b - a>ebf 03.6) 

= x0 - yo/(b - f2M 1 - e(b-o)f] eat, (B-7) 

y = y,e*‘. 03.8) 

The first equation (B.6) for x is that generated numerically. Due to evaluation errors, 
the denominator term (a - b) is not exactly equal to the corresponding one (b - a), 
nor the difference of the exponential arguments. Thus proceeding to the limit b -+ a, 
as the matrix becomes defective, 

x + [x, t yet] eat Q3.9) 

which is an exact solution. The numerical calculation will not achieve this result 
unless care is taken to ensure the limit by a reduction to the exact solution. This may 
be accomplished by a series of tests on the eigenvalues (for degeneracy) and subse- 
quently on the eigenvectors (for parallelism). If the order of the non-linear divisors is 
greater than two, the appropriate higher-order analytic solution must be used [9]. 

The determination of the eigenvectors of S can be performed by a standard 
method. Since R is in general an asymmetric matrix with no clearly defined sparsity 
pattern, a general eigenvalue method must be used. The most efficient such method 
involves a reduction to Hessenberg form followed by an iterative evaluation of the 
eigenvalues using the LR or QR schemes [9]. The reduction to Hessenberg form is 
generally the most computationally expensive involving approximately 5/3 (n - 1)3 
multiplications for Householder’s method [9]. The QR algorithm involves a further 
4(n - 1)2 multiplications per iteration step [9]. Thus, including the necessary 
preliminary solution of the equilibrium state, this method involves approximately 
2(n - 1)3 multiplications. 

In view of the complicated structure of the scheme outlined above and the iterative 
nature of the calculations, it is natural to consider the suitability of an iterative 
scheme for calculating eigenvalues, for which the transformation obtained in the 
previous time step may be used as a first approximation. Jacobi’s method [lo] 
provides such a scheme. However, the general method involves about 8(n - l)3 
multiplications per sweep, and is therefore considerably more expensive than the QR 
iterative method. 
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